State of Montana Board of Oil and Gas

Docket No: <u>TBD</u> Underground Injection Control Application

BR 41-35H 52

Section 35, Township 25N, Range 52E

White Rock Oil and Gas, LLC

June 12, 2025

BR 41-35H 52 UIC APPLICATION - DAKOTA/ LAKOTA

May 7, 2025

John Gizicki Underground Injection Control (UIC) Program Director Montana Board of Oil and Gas Conservation 2535 St. Johns Avenue Billings, MT 59102

RE: Request for Injection Permit BR 41-35H 52 located in Section 35, Township 25N, Range 52E Richland County, Montana

Dear Mr. John Gizicki,

Please find enclosed an Underground Injection Control (UIC) application by White Rock Oil and Gas, LLC. requesting an aquifer exemption for the Dakota/ Lakota Formations in the well, BR 41-35H 52, operated by White Rock Oil and Gas, LLC. In Elm Coulee field. This well will be plugged back and completed as a water disposal well.

I certify the information contained in this application is, to the best of my knowledge, true and correct, and the work associated with the operation proposed herein will be performed by White Rock Oil and Gas, LLC. in conformity with this application and the terms and conditions under which it is approved.

White Rock Oil and Gas, LLC. is requesting the application be placed on the docket for the MBOGC June 12, 2025 hearing.

If you have any questions concerning the enclosed application, please contact Tanner Butler, Operations Engineer at (214) 666-5494 or via email at tbutler@whiterockog.com.

Sincerely,

Runty Gument

Rusty Ginnetti Chief Operating Officer White Rock Oil and Gas, LLC.

Underground Injection Control (UIC) Permit Application BR 41-35H 52 Injection

The following report and justification are submitted in support of the application by White Rock Oil and Gas, LLC. to permit the conversion of the BR 41-35H 52, which is a shut in Bakken producer, for the purpose of water injection into the Dakota/ Lakota formations as required by Rule 36-22-1403 of the Rules and Regulations of the Montana Board of Oil and Gas Conservation.

1(a) Location of Injection Well:

The BR 41-35H 52 well is herein proposed for conversion to a water injection well. This well was originally drilled and completed in the Middle Bakken. In 2005, a straddle packer assembly was left in the hole at a depth of 8,729 feet. During a July 2016 workover by previous operator, ConocoPhillips, a 5-3/4" bit and scraper was run and milled through 20 feet of scale above the straddle packer fish. Acid was spotted to clean up scale and the acid could not be pumped through the fish. Acid was circulated back out of the hole along with acid gas - H2S. Milling operations were continued until circulation was lost at 8,755.5 feet. The well was returned to production. During the subsequent workover by Conoco in July of 2018, the casing was found to be plugged. Diagnostics were then initiated to determine a suspected casing leak. A packer/RBP was ran and determined a casing leak from 3,582'-3,608'. Conoco Phillips ran a packer to produce the well under the casing leak without repairing. White Rock acquired the well in 2021. A workover was performed in February 2024. Tubing was parted at 6,718', which is 1,897' above the production packer Conoco ran. Due to the corrosion witnessed on recovered tubing, it was decided to latch up with overshot and cut tubing at \sim 8,500' to maximize recovery efforts on the second fishing attempt. Tubing was successfully recovered down to 8,484'. Two subsequent fishing attempts were made to jar the packer loose unsuccessfully. The well has been shut-in since 2024. Exhibit 1 shows the surface location and a circle of a quarter (1/4) mile radius representing the area of review (AOR) for this well.

BR 41-35H 52	250 ft FNL, 500 ft FEL	NENE, Sec 35, T25N, R52E
--------------	------------------------	--------------------------

1(b) Wells within a Quarter Mile (1,320 ft) Area of Review (AOR):

There are not any wells drilled within ¼ mile AOR.

The closest wells to the BR 41-35H 52 are the State Blackjack 21-36H 52 Bakken well and the BR 21-35H 52 Bakken well which are outside the AOR at 0.53 mile and 0.50 miles respectively.

1(c) Location of all pipelines:

There are currently not pipelines installed to transport water to the BR 41-35H. Development plans due include the installation of a produced water gathering line. Produced water will be delivered by truck until the produced water gathering line is installed.

There is development planned in 2025 for a 3-producer, new drill pad in the southern half of Section 35, Twn. 25N, Rng. 52E. A line is planned to be installed to the BR 41-35H 52 from this pad. The line will be flushed with freshwater and pressure tested prior to use. There will be meters at this pad to verify shipment and injection water volumes are aligned.

1(d) Area Producing Formations, Freshwater Aquifers, and Water Well Information:

There are not any wells within the ¼ mile Area of Review (AOR) producing from an oil and gas zone or any water wells. Although not within the area of review, the closest wells with surface locations within ½ mile of the BR 41-35H 52 are described.

BR 21-35H 52, (NENW, Section 35, T25N, R52E), 2,640 ft to the west of the proposed SWD well was drilled in 2006 as a Bakken Producer. The well continues to produce from the Bakken at approximately 9,200 feet TVD.

State Blackjack 21-36H 52, (NENW, Section 36, T25N, R52E), 2,810 ft to the east of the proposed SWD well was drilled in 2005 as a Bakken Producer. The well continues to produce from the Bakken at approximately 9,200 feet TVD.

Underground Sources of Drinking Water (USDW) is defined as an aquifer or its portion which: (1) Supplies any public water system, or (2) Contains a sufficient quantity of ground water to supply a public water system; and (i) Currently supplies drinking water for human consumption; or (ii) Contains fewer than 10,000 milligrams of total dissolved solids per liter. A review of the area that USDW with a TDS less than 10,000 mg/l may be available to the base of the Fox Hills. The proposed injection zones Lakota and Dakota formations may contain fluids with Total Dissolved Solids (TDS) between 3,000 and 10,000 mg/L. There is data within a 12 miles radius that indicates the TDS will be greater than 10,000 mg/L. Additional information about these zones, potential wells, and ground water protection is detailed in this section. An aquifer exemption was included in the SWD application for the Lakota and Dakota Formations.

Freshwater well data was obtained from the Ground Water Information Center (MBMG Data Center) website <u>https://mbmggwic.mtech.edu/</u>. There are no freshwater wells which produce within the AOR of the proposed injector. See Exhibit 2. Map of Freshwater Wells. The closest freshwater wells are listed below (outside the AOR):

Well Name	Location	Use	Distance from Proposed SWD	Depth of Well
White Rock Oil and Gas	Sec 35, T25N, R52E	Industrial	0.51 miles	1,128 ft
Alfred Candee	Sec 7, T24N, R53E	Stockwater	1.00 miles	170 ft
Dorothy Freeman	Sec 7, T24N, R53E	Stockwater	1.24 miles	150 ft
Marvin and Ervin Goss	Sec 25, T25N, R52E	Stockwater	1.35 Miles	155 ft
Swihart Allen	Sec 27, T25N, R52E	Stockwater	1.90 Miles	40 ft

There is an upper member of the Fort Union, the Tongue River, normally less than 200' from the surface. There are several shallow water wells drilled for cattle watering and for domestic use that appear to be in this zone. There are not any of these wells in the area of review. There closest water quality sample in these shallow zones is the Swihart Allen in Section 27, T25N, R52E. Total dissolved solids for this water well 1.90 miles northwest of BR 41-35H 52 were 1,299 ppm. See Exhibit 3 for full water analysis.

The Hell Creek and Fox Hill zones act as potential sources of freshwater. The depth to the Fox Hills-Lower Creek Aquifer is approximately 1,000-1,200' in the area of the BR 41-35H per Depth to the Fox Hills – Lower Hell Creek Aquifer, Lower Yellowstone River Area map by Larry Smith which is part of the GWAA 1-2-03 publication dated 1998. White Rock has drilled a Fox Hills well near the BR 41-35H. Candee 1 WSW in Section 35, T25N, R52E lab confirmed total dissolved solids for this water well 0.51 miles west of BR 41-35H 52 of 1,433 ppm. See Exhibit 3 for full water analysis. Surface casing has been cemented to surface to protect shallower freshwater zones.

Any potential Underground Sources of Drinking Water (USDW) is protected from the proposed injection zone by surface casing set at 1,188 ft MD/TVD and cemented to surface. The production casing was set at 9,530 ft with a one-stage cement job. The lead cement consisted of 265 sacks of 65/35 Class G Poz 12.7 ppg cement slurry followed by tail cement of 520 sx of Class G 15.6 ppg slurry that resulted in an estimated Top of Cement (TOC) 5,500 ft. Due to TOC not being above proposed injection interval, a block squeeze will be performed above the Dakota to ensure isolation across the bounding Skull Creek shale. Tubing and an injection packer will result in further isolation of fresh USDW from produced water.

1(e) Name and Geologic Description of Injection Zone:

The BR 41-35H 52 SWD will be completed for disposal into the Lakota and Dakota formations.

Water quality information for the proposed disposal zones in the immediate area of BR 41-35H 52 is not available. However, a water sample from the Dakota in Verschoot 1-19 SWD located 11.0 miles southeast of the proposed disposal site had total dissolved solids of 20,346 mg/L. In addition, the Charlie Creek 8-23 SWD located 12 miles northeast had a TDS in the Lakota of 11,600 mg/L and water from the Dakota had a TDS of 11,500 mg/L. The Dakota and Lakota in the BR 41-35H 52 are expected to be similar. The samples from the Verschoot 1-19 SWD were acquired at the wellhead shortly after the well was recompleted as an injector. The Charlie Creek 8-23 samples were acquired by swabbing each zone. In some areas, the upper Dakota water lies between the 3,000 ppm and 10,000 ppm cutoff. Due to the distance between the BR 41-35H 52 and Dakota/Lakota water samples, White Rock will apply for an aquifer exemption. When the well is recompleted, swab analysis will be used to confirm the TDS.

Formation	Lithology	Top (ft)	Bottom (ft)	Net pay (ft)	Pressure (psi)	Porosity
Dakota	Sandstone	4742	4871	22	2,090	12%
Lakota	Sandstone	5026	5343	104	2,555	17%

Proposed injection zones for the BR 41-35H 52 SWD are as follows:

Depth and net pay for each of the proposed injections zones are estimate from the Cement Bond Log and Gamma Ray ran June 6, 2005, on the BR 41-35H 52. The porosity is based on the density logs across the zones of interest in the following wellbores: NP 1-33 (8 miles W) and Edeburn 1-2H (5 miles N). The porosity was derived from the bulk density curve calculated on a sandstone matrix. Formation pressure was estimated using a water gradient of 0.435 psi/ft.

The confining formations for the proposed injection zones are the Skull Creek for the Dakota and the Fuson for the Lakota.

The Jurassic Swift formation is the lower confining layer. It is primarily a transgressiveregressive, clastic, shallow marine deposit composed of dark gray to greenish shales, and slightly calcareous, dark gray to greenish, waxy shales, commonly interbedded with glauconitic siltstones and sandstones with occasional carbonate units consisting of sand sized skeletal packstones and grainstones. The upper half of the Swift is mostly shaly, glauconitic siltstones, and sandstones with associated shales. The Swift formation is approximately 392 ft in this area. The actual fracture gradients for these confining zones are unknown, but fracture gradients for the confining shale layers are known to be higher than those for the underlying sandstone injection zone.

Formation	Lithology	Top (ft)	Bottom (ft)
Skull Creek	Shale	4,587	4,742
Fuson	Shale	4,871	5,026
Swift	Shale	5,343	5,735

Considering the vertical distance to any USDW and the maximum feasible injection rate that could occur, the likelihood of a fracture extending from the proposed disposal zones to any USDW under any reasonable disposal conditions is considered low.

Proposed injection See Exhibit 4: Cross Section of Dakota/ Lakota, Exhibit 5: Log of Injection Interval, and Exhibit 6: Water Analysis of Injection Intervals.

1(f) Additional Information on Producing Wells within the AOR:

There are no producing wells within the area of review.

1(g) Open Hole Logs:

Logs and geologic information for the BR 41-35H 52 well are currently on file with MBOGC. A cement bond long currently exists for the BR 41-35H 52 with the top of cement at 5,500 ft. A block squeeze will have to be performed above the Dakota.

1(h) Description of the Wellbore Construction:

The current configuration of the wellbore, as indicated on the attached diagram, Exhibit 7. The well currently has multiple packer fish with current fish top at 8,484 ft. The fish are expected to be plugged based on previous workovers. Therefore a cast iron bridge plug will be set at 8450' with 30 sx of Class G cement w/35% silica flour spotted on top.

A second cast iron bridge plug will be set at 5600' with 10 sx of cement on top. Squeeze perfs will be added twenty feet above top of Dakota at 4722'. This holes will be squeezed under a cast iron cement retainer. The casing leak at 3582'-3609' will be squeezed and repaired under a cast iron cement retainer. After drilling out two cast iron cement retainers previously mentioned and passing a pressure test, a subsequent CBL will be run to confirm the Dakota block squeeze yielded adequate TOC.

The interval proposed for disposal will be the Dakota from 4,742 -4,871 ft and the Lakota from 5,026 -5,343 ft. This interval will be likely be treated with 15% HCl upon approval of the permit to facilitate near wellbore debris and aid in injectivity. The well is currently shut waiting on permit approval.

When the well is recompleted, plastic coated equipment will be used to help mitigate corrosion and the tubing/casing annulus will be filled with packer fluid to protect from corrosion. Pressure gauges will be utilized on both the tubing and the tubing/ casing annulus to monitor pressures. This data will be recorded along with disposal rates and volumes on a daily basis.

1(i) Description of Injection Fluid:

The fluid to be injected will consist entirely of water produced with the Bakken in multiple White Rock wells. The anticipated injection volumes will be in the range of 1,000 to 4,000 BWPD. Actual injection rates may vary and volumes will be determined by the capacity of the well to take the fluid and at what injection pressure. Exhibit 9 is the representative water chemistry analysis of the produced Bakken water. No incompatibilities are expected.

Surface injection pressures will not be allowed to exceed a maximum based on the EPA accepted fracture gradient of 0.733 psi/ ft and the following equation.

 $IP_{MAX} = (FG) (D_{Top}) - (SG) (0.433)(D_{Top})$

Where: IP_{MAX}= Maximum Surface Injection Pressure (psi)

FG = Assumed Fracture Gradient in Confining Zone = 0.733 psi/ft

SG = Specific Gravity of Injection Fluid = 1.18

D_{Top}= Depth at top of perforated interval of injection zone (ft)

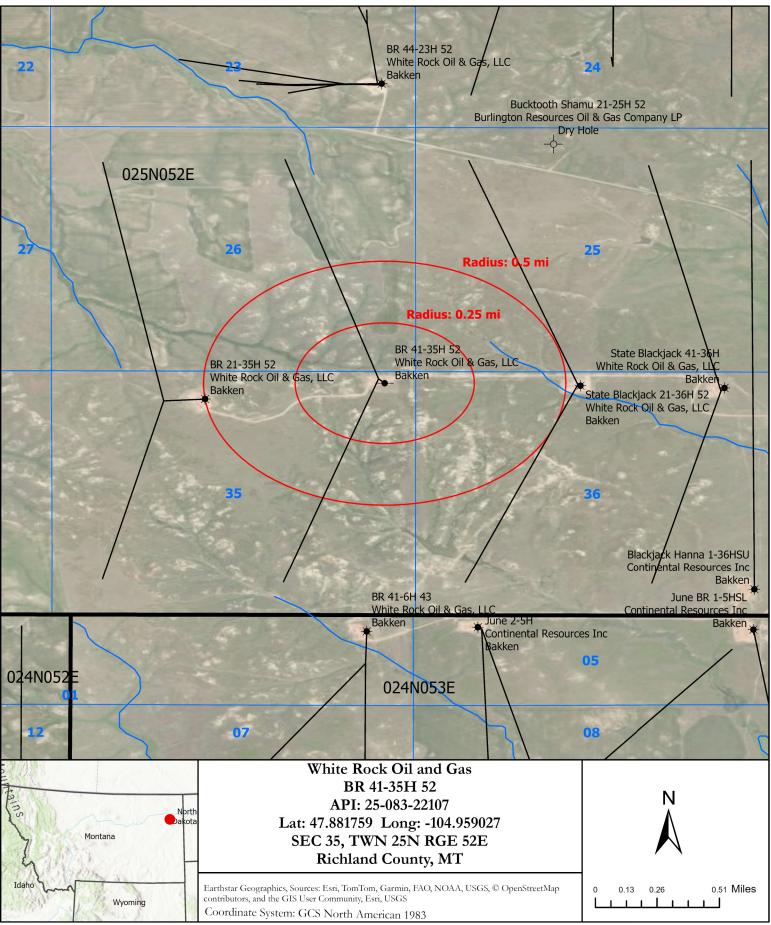
The computed maximum injection pressure would be:

 $IP_{MAX} = (0.733 \text{ psi/ft})(4,742 \text{ ft}) - (1.18)(0.433)(4,742 \text{ ft})$

IP_{MAX} = 1,053 psi

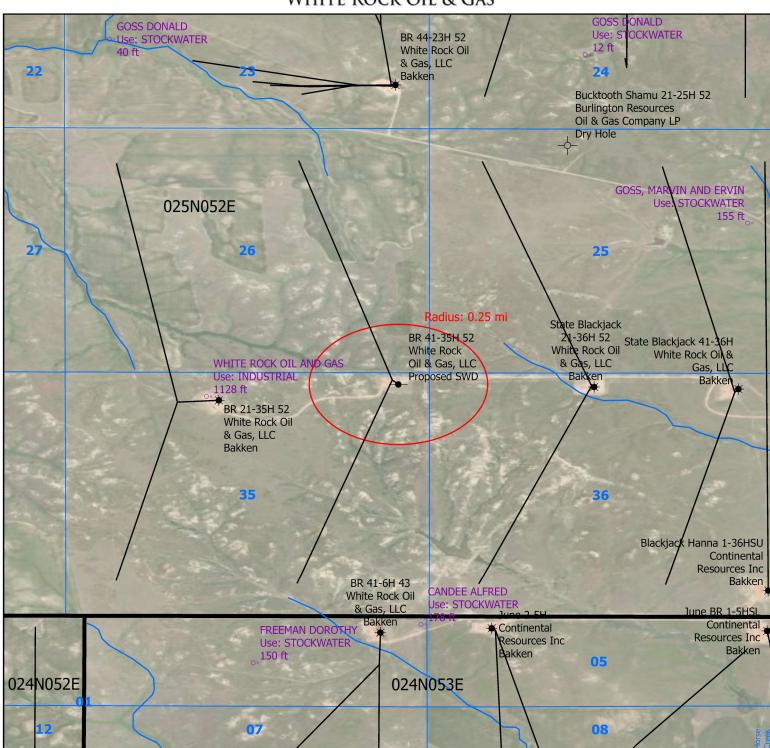
The computed maximum injection pressure for the Dakota/ Lakota is 1,053 psi. An injection test (step-rate test) will be performed to determine the final injection pressures and volumes to ensure the formation parting pressure (fracture pressure) is not reached during injection operations. In comparison, the Simonsen A 1-4 max injection pressure is 1,317 psi.

1(j) Names and addresses of the leasehold owners, including unleased mineral owners, and the surface owners within the area of review of the input well(s).: The names and addresses of leasehold and surface owners within the area of review for the proposed injection well are listed in Exhibit 10.


White Rock oil and Gas, LLC. will notify leasehold owners, surface owners, and unleased minerals in accordance with 36.22.1410(1) notification requirements for an underground injection permit. Affidavit of Notification to Surface and Mineral Owners along with an example of the mailed notice is attached in Exhibit 11 and Exhibit 12.

List of All Exhibits

- Exhibit 1 Map of General Area with Area of Review (AOR)
- Exhibit 2 Map of freshwater wells with Area of Review (AOR)
- Exhibit 3 Freshwater sample analysis
- Exhibit 4 Geologic Cross Section of the Dakota/ Lakota
- Exhibit 5 Log of Injection Intervals
- Exhibit 6 Water Analysis of Injection Intervals
- Exhibit 7 Current Wellbore Diagram
- Exhibit 8 Proposed Wellbore Diagram
- Exhibit 9 Bakken Water analysis
- Exhibit 10 Surface and Mineral Owner List
- Exhibit 11 Notification to Surface and Mineral Owners Letter
- Exhibit 12 Affidavit of Notification to Surface and Mineral Owners


Exhibit 1: Proposed Injection Well and Area of review.

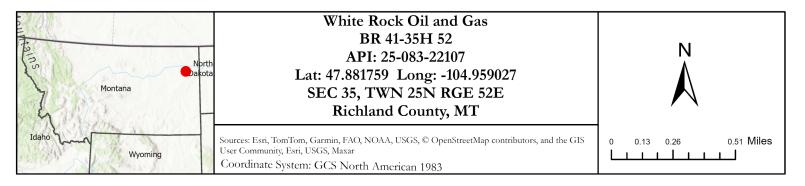


Exhibit 2: Proposed SWD with freshwater wells within AOR

Ground-Water Information Center Water Quality Report **Report Date:** 3/6/2025

Site Name: SWIHART ALLEN Compare to Water Quality Standards

		Loca	tion Information				
Sample Id/Site Id:	197	5Q1736 / 3063	Sample Date:		11/12/	1975 11:25:00 AM	
Location (TRS):		1 52E 27 BABB	Agency/Sampl	ler:		/ WRC	
Latitude/Longitude:			38" W Field Number:		MC-10		
Datum:		D27	Lab Date:		1/19/1		
Altitude:	229		Lab/Analyst:			G / LAW	
			•	1/TT 11'			
County/State:		CHLAND / MT	Sample Metho	-	-		
Site Type:	WE		Procedure Typ			DLVED	
Geology:		ALVM	Total Depth (f	t):	40		
USGS 7.5' Quad:	ELI	MDALE NW 7 1/2	' SWL-MP (ft):		NR		
PWS Id:			Depth Water E	Inters (ft):	20		
Project:	GW	VCP01					
			jor Ion Results		/1	a.	
	Calainm (Ca)	mg/L meq				neq/L 700	
	Calcium (Ca) Magnesium (Mg)	159.100 7.939 102.100 8.402		3) 47. 0.0		.790 .000	
	Sodium (Na)	131.000 5.699		3.5		.099	
	Potassium (K)	4.300 0.110			7.600 1.		
	Iron (Fe)	0.010 0.000		3.8		.271	
	Manganese (Mn)	0.010 0.000	()	NR		.000	
	Silica (SiO ₂)	13.000	Orthophosphate (as	SP) NR	R 0.	.000	
	Total Ca			nions	2	1.650	
A1 · (A1)			ement Results (µg/L)	`	ND		
Aluminum (Al): Antimony (Sb):	NR Cesium (Cs NR Chromium	/	R Molybdenum (Mo R Nickel (Ni):):	NR NR	Strontium (Sr): Thallium (Tl):	NR NR
Arsenic (As):	NR Cobalt (Co)		R Niobium (Nb):		NR	Thorium (TI):	NR
Barium (Ba):	NR Copper (Cu		R Neodymium (Nd):		NR	Tin (Sn):	NR
Beryllium (Be):	NR Gallium (G	/	5		NR	Titanium (Ti):	NR
Boron (B):	NR Lanthanum			·):	NR	Tungsten (W):	NR
Bromide (Br):	NR Lead (Pb):	N			NR	Uranium (U):	NR
Cadmium (Cd):	NR Lithium (Li				NR	Vanadium (V):	NR
Cerium (Ce):	NR Mercury (H	(g): N	R Selenium (Se):		NR	Zinc (Zn) :	NR
		Field Chamistry	and Other Analytical	Doculto		Zirconium (Zr):	NR
**Total Dissolved Solids	s (mg/L)· 1299 1	9 Field Hardness as	e e		mmonia	(mg/L)·	NR
**Sum of Diss. Constitu			(U /			ocarbons (µg/L):	NR
Field Conductivity (µmh		Field Alkalinity a			CP (µg/L		NR
Lab Conductivity (µmho	· · · · · · · · · · · · · · · · · · ·	Alkalinity as CaC	(U			us, TD (mg/L):	NR
Field pH:	NR	Ryznar Stability			-	ate (mg/L):	NR
Lab pH:	7.75	Sodium Adsorpti				olved O_2 (mg/L):	NR
Water Temp (°C):	NR	Langlier Saturatio				wride (mg/L):	NR
Air Temp (°C):	NR	Nitrite (mg/L as I			ield Redo		NR
Nitrate + Nitrite (mg/L a		Hydroxide (mg/L				olved Organic Carbon (
Total Kjeldahl Nitrogen	/		organic Carbon (mg/L			Organic Carbon (mg/L	
Total Nitrogen (mg/L as		Acidity to 4.5 (m				8.3 (mg/L CaCO3)	NR
As(III) (ug/L)	NR	As(V) (ug/L)	5/1 cucos)		•	Solids (mg/L)	NR
Sample	THE	715(V) (ug/L)			otal otisp	Notes	1111
Condition:							
Field Remarks: SHALLO	OW GW 048 * WEI	L LOCATED IN S	STREAM BED 200 FT	SOF			
COUNT Lab Remarks:	Y ROAD *						
	lligrame por Litere	a/I - microarama	ner Liter: ft - foot: NI	$\mathbf{D} = \mathbf{N} \mathbf{o} \mathbf{D} \mathbf{o} \mathbf{c}$	ding in (GWIC	
<u>Explanation:</u> $mg/L = mi$			-		-		iter also
<u>Qualifiers:</u> $\mathbf{A} = Hydride$ detection limit but below	v reporting limit; K	= Na+K combined	; N = Spiked sample re	ecovery not	within c	ontrol limits; P = Prese	erved
sample; $S =$ Method of s limits; ** = Sum of Diss	olved Constituents	is the sum of major		lg, Mn, Fe)			

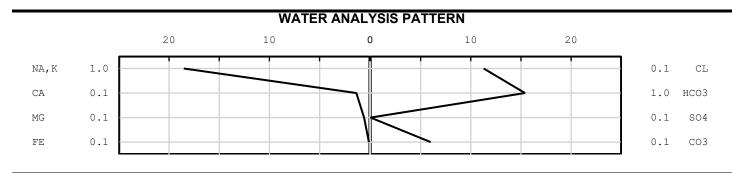
NO₃, F) in mg/L. Total Dissolved Solids is reported as equivalent weight of evaporation residue.

Disclaimer

These data represent the contents of the GWIC databases at the Montana Bureau of Mines and Geology at the time and date of the retrieval. The information is considered unpublished and is subject to correction and review on a daily basis. The Bureau warrants the accurate transmission of the data to the original end user. Retransmission of the data to other users is discouraged and the Bureau claims no responsibility if the material is retransmitted.

Exhibit 3: Freshwater Analysis- Fox Hills

ASTRO-CHEM LAB, INC.


4102 2nd Ave. W.

Williston, North Dakota 58802-0972 Phone: (701) 572-7355

P.O. Box 972

WATED ANALVER DEDODT

	W	ATER ANAL	YSIS REPOR	T			
Sample Number:	24-03145		Date of A	nalysis: 9/4/2	2024		
Company:	White Rock Oil & Ga	as					
City:	Plano			State: TX			
Well Number:	Candee 1 WSW						
Sample Source:			Samp	led By: Trevo	or Vannatta		
Date Received:	9/4/2024		Date Sa	mpled: 9/3/2	2024		
Temperature:			Pr	essure:			
Formation:				Depth:			
Location:	Secti	ion:	Twp:	Rng:	Cou	nty:	
Distribution:	Distribution List						
	Resistivity @ 77 °F	5.464 Ohm-M	leters	рН	8.31		
Spo	ecific Gravity @ 77 °F	1.000		H₂S	Negative		
Total Dissolve	ed Solids (Calculated)	1433 mg/L		1433 ppm			
Sodium	Chloride (Calculated)	66 mg/L		66 ppm			
CATION	MEQ/L	mg/L	ANI	ON	MEQ/L	mg/L	_
CALCIUM	0.1	3	CHLORIDE		1.1	40	
MAGNESIUM	0.1	1	CARBONAT	E	0.6	18	
SODIUM	18.5	426	BICARBON	ATE	15.4	940	
IRON	0.0	0.2	SULFATE		0.0	0	
CHROMIUM	0.0	0.0	NITRATE		0.0	0	
BARIUM	0.0	1.0					
BARIUM POTASSIUM	0.0 0.1	1.0 4					
-		_					
POTASSIUM	0.1	4					
POTASSIUM STRONTIUM	0.1 0.0	4 0.1	L ANALYSIS				
POTASSIUM STRONTIUM	0.1 0.0 0.0	4 0.1 0.0	L ANALYSIS Total Manga	nese	0	.10 mg/l	

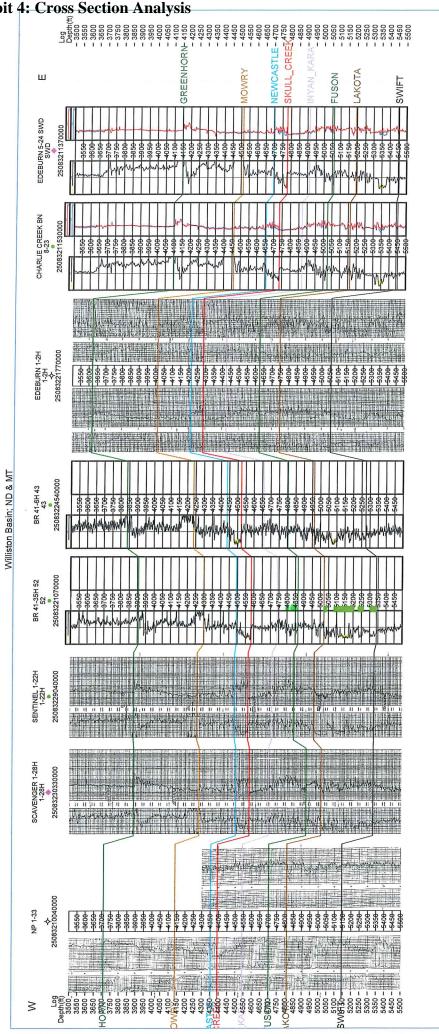
Remarks:

Analyzed By: L. Covarrubias

ASTRO-CHEM LAB, INC.

4102 2nd Ave. W.

Williston, North Dakota 58802-0972 Phone: (701) 572-7355


P.O. Box 972

SCALING INDEX

Comp Well Num Sample Sou	ved: 9/4/2024 ure:	State: TX						
Locat		Section: st	County:					
		KSP	Sat. Index	mg/L PPT				
BaSO4		0.000000004	0.390	0.00				
SrSO4		0.0000017494	0.590	0.00				
CaSO4		0.0002852253	1.300	0.00				
CaCO3		0.000006886	0.100	3.04				
	Ionic Strength	0.018 (Molal)	Ionic Strength	0.018 (Molar)				
	Index Calculated At	70 deg F	And	50 PSI				
		KSP	Sat. Index	mg/L PPT				
BaSO4		0.000000004	0.390	0.00				
SrSO4		0.0000004622	0.010	0.00				
CaSO4		0.0002852253	1.300	0.00				
CaCO3		0.000000186	1.670	7.44				
	Ionic Strength	0.018 (Molal)	Ionic Strength	0.018 (Molar)				
	Index Calculated At	250 deg F	And	5000 PSI				

Exhibit 4: Cross Section Analysis

27 28 23 30 23 33 21 28 26 23 34 25 34 35 33 34 35 34 35 33 34 35							13 13 13 13 13 13 13 13 13 13 13 13 13 1		28 28 28 28 28 28 28 28 28 28 28 28 28 2	
34 27	10 03	ت ت ا	52	27	34	12	13	54	25	Ж
3 Z		SN5	N.	28	R	11 02	14	ß	56	
33 58	6 04	52 [⊪]	Ň			10 03	5		27	Ope ator Name IS PRESENT 34 5/5/2025 12:27:26 PM
32	8 8	17	ß	59	32	60	16	24N5	28	Cpolator Namo IS PRESENT 33 Opolator Namo IS PRESENT PETRA 3/5/2025 12:27:26 PM

PETRA 3/3/2025 3:34:05 PM

Exhibit 4: Cross Section Analysis

Brain and State Sta		BR 41-35H 52	
4800 - - - 4800 4800 - - - 4800 4850 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 4800 - - - 4800 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - 5800 - - - - <tr< td=""><td>Log Depth(ft) 4500 -</td><td>25083221070000</td><td>Log Depth(ft) - 4500</td></tr<>	Log Depth(ft) 4500 -	25083221070000	Log Depth(ft) - 4500
4600 - -400 4650 - -4650 4750 - -4700 4750 - DAKOTA -4700 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 4800 - -4800 -4800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -5800 5800 - -5800 -58	4550 -		- 4550
5000 - - 5000 5050 - - 5050 5100 - - 5150 5150 - - 5150 5200 - - 5200 5200 - - 5200 5250 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5400 5500 - - 5500 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td>SKULL CREEK</td> <td>- 4600</td>		SKULL CREEK	- 4600
5000 - - 5000 5050 - - 5050 5100 - - 5100 5150 - - 5150 5200 - - 5200 5200 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td></td> <td>- 4650</td>			- 4650
5000 - - 5000 5050 - - 5050 5100 - - 5100 5150 - - 5150 5200 - - 5200 5200 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td></td> <td>- 4700</td>			- 4700
5000 - - 5000 5050 - - 5050 5100 - - 5100 5150 - - 5150 5200 - - 5200 5200 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td>DAKOTA</td> <td>- 4750</td>		DAKOTA	- 4750
5000 - - 5000 5050 - - 5050 5100 - - 5100 5150 - - 5150 5200 - - 5200 5200 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td></td> <td>- 4800</td>			- 4800
5000 - - 5000 5050 - - 5050 5100 - - 5100 5150 - - 5150 5200 - - 5200 5200 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td></td> <td>- 4850</td>			- 4850
5000 - - 5000 5050 - - 5050 5100 - - 5100 5150 - - 5150 5200 - - 5200 5200 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td>FUSON</td> <td>- 4900</td>		FUSON	- 4900
5000 - - 5000 5050 - - 5050 5100 - - 5100 5150 - - 5150 5200 - - 5200 5200 - - 5200 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5300 5300 - - 5400 5400 - - 5400 5450 - - 5400 5500 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 <td></td> <td></td> <td>- 4950</td>			- 4950
5150 - - 5150 5200 - - 5200 5250 - - 5250 5300 - - 5300 5350 - - 5300 5350 - - 5300 5400 - - 5400 5400 - - 5400 5500 - - 5450 5500 - - 5450 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5600 - - 5600 5700 - - 5700 5750 - - 5700			- 5000
5150 - - 5150 5200 - - 5200 5250 - - 5250 5300 - - 5300 5300 - - 5300 5350 - - 5300 5400 - - 5400 5400 - - 5400 5500 - - 5400 5500 - - 5450 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5600 - - 5600 5700 - - 5700 5750 - - 5700			- 5050
5150 - - 5150 5200 - - 5200 5250 - - 5250 5300 - - 5300 5300 - - 5300 5350 - - 5300 5400 - - 5400 5400 - - 5400 5500 - - 5400 5500 - - 5450 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5500 - - 5600 5600 - - 5600 5700 - - 5700 5750 - - 5700			- 5100
5200 - - 5200 5250 - - 5250 5300 - - 5300 5350 - - 5350 5400 - - 5400 5500 - - 5450 5500 - - 5500 5500 - - 5500 5500 - - 5500 5500 - - 5500 5500 - - 5500 5500 - - 5500 5600 - - 5600 5600 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700			- 5150
5350 - - 5350 5400 - - 5400 5450 - - 5450 5500 - - 5500 5550 - - 5550 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700			- 5200
5350 - - 5350 5400 - - 5400 5450 - - 5450 5500 - - 5500 5550 - - 5550 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700			- 5250
5350 - - 5350 5400 - - 5400 5450 - - 5450 5500 - - 5500 5550 - - 5550 5600 - - 5600 5600 - - 5600 5600 - - 5600 5600 - - 5600 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5700			- 5300
5400 - - 5400 5450 - - 5450 5500 - - 5500 5550 - - 5550 5600 - - 5600 5650 - - 5600 5650 - - 5600 5650 - - 5650 5650 - - 5650 5700 - - 5700 5750 - - 5700 5750 - - 5700 5750 - - 5750	5350 -	SWIFI	- 5350
5450 - - 5450 5500 - - 5550 5550 - - 5550 5600 - - 5600 5650 - - 5650 5600 - - 5650 5600 - - 5650 5600 - - 5650 5700 - - 5750 5800 - - 5750 5800 - - 5800		right and the second seco	- 5400
5500 - - - 5500 5550 - - - 5550 5600 - - - 5600 5650 - - - 5600 5650 - - - 5650 5700 - - - 5700 5750 - - - 5700 5800 - - 5750 - 5800 - - 5800 -		A A A A A A A A A A A A A A A A A A A	- 5450
5550 - - 550 5600 - - 5600 5650 - - 5650 5650 - - 5650 5700 - - 5700 5750 - - 5750 5800 - - 5800			- 5500
5600 - -5600 $5650 -5650$ $5700 -5700$ $5750 -5750$ $5800 -5800$			- 5550
5650 - - 5650 5700 - - 5700 5750 - - 5750 5800 - 2,518 2,486 - 5800		Low Charles and the second sec	- 5600
5700 - - 5750 - - 5750 - 5800 - 2,518 - 5800			- 5650
5750 5750 5800 - 2,518 2,486 - 5800			- 5700
5800 - 2,518 2,486 - 5800			- 5750
2,486		2518	- 5800
		2,486	

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	White Rock Oil & Gas
Project:	Drinking Water Contaminants
Lab ID:	B24091147-001
Client Sample ID:	Charlie Creek GN 8-23

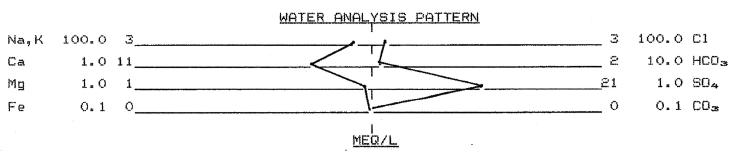
Report Date: 09/17/24 Collection Date: 09/12/24 10:35 DateReceived: 09/12/24 Matrix: Drinking Water

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
PHYSICAL PROPERTIES					
pН	7.1 s.u.	Н	0.1	A4500-H B	09/13/24 11:40 / njp
pH Measurement Temp	16.7 °C		1.0	A4500-H B	09/13/24 11:40 / njp
Conductivity @ 25 C	15200 umhos/cm	า	5	A2510 B	09/13/24 11:40 / njp
Solids, Total Dissolved TDS @ 180 C	11500 mg/L		200	A2540 C	09/13/24 12:27 / bmm
NUTRIENTS					
Nitrogen, Nitrite as N	0.02 mg/L		0.01	E353.2	09/12/24 17:34 / krt

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:White Rock Oil & GasProject:Not IndicatedLab ID:B24082375-001Client Sample ID:Charlie Creek 8-23-Lakota


Report Date: 08/28/24 Collection Date: 08/18/24 DateReceived: 08/23/24 Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
PHYSICAL PROPERTIES					
pH	7.7 s.u.	Н	0.1	A4500-H B	08/28/24 15:36 / njp
pH Measurement Temp	17.7 °C	Н	1.0	A4500-H B	08/28/24 15:36 / njp
Conductivity @ 25 C	18800 umho	s/cm	5	A2510 B	08/23/24 13:42 / pmw
Solids, Total Dissolved TDS @ 180 C	11600 mg/L		500	A2540 C	08/23/24 14:10 / bmm

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit H - Analysis performed past the method holding time

4102 2nd Ave. West	ASTRO-CHEM Williston, North Dakota P.O. Box 97 WATER_ANALYSI	a 58802-0972 72	<i>C</i> .	Phone: (701) 572-7355
SAMPLE NUMBER	W-12-3802		ALYSIS	5-15-12
COMPANY Slaw	son			
<u>CITY</u> Denver			STATE	CO
WELL NAME AND/	OR NUMBER Verschoot 1-19 Sk	ID		
DATE RECEIVED	5-14-12	DST NUMBER		
SAMPLE SOURCE	Wellhead			
LOCATION	OF SEC. TWN.	RANGE	<u>COUNTY</u>	Richland
FORMATION Da	kota	DEPTH		
DISTRIBUTION	Don Smith Sam Thome			
RESISTIVITY @	77°F = 0.446 Ohm-Meters	pH =	7.13	
SPECIFIC GRAVI	TY @ 77°F = 1.010	HeS = Nega	tive	
TOTAL DISSOLVE	D SOLIDS (CALCULATED) = 20)346 mg/L (20144	ppm)
SODIUM CHLORID	E (CALCULATED) = 16837 mg/	'L (16670	ppm)	

CATION	MEQ/L	mg/L	ANION	MEQ/L	mg/L
CALCIUM	11.0	218	CHLORIDE	288.0	10210
MAGNESIUM	1.0	11	CARBONATE	0.0	0
SODIUM	319.7	7350	BICARBONATE	22.2	1355
IRON	0.0	0.6	SULFATE	20.8	999
CHROMIUM	0.0	0.0	NITRATE	0. i	5
BARIUM	0.0	0.0			
POTASSIUM	4.7	182			
STRONTIUM	0.2	9.0			
ZINC	0.2	5.4			N N

REMARKS

ANALYZED BY:

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Exhibit 6: Water Analysis of Injection Interval

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	White Rock Oil & Gas
Project:	Not Indicated
Lab ID:	B24082375-001
Client Sample ID:	Charlie Creek 8-23-Lakota

Report Date:08/28/24Collection Date:08/18/24DateReceived:08/23/24Matrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
PHYSICAL PROPERTIES					
pH	7.7 s.u.	Н	0.1	A4500-H B	08/28/24 15:36 / njp
pH Measurement Temp	17.7 °C	Н	1.0	A4500-H B	08/28/24 15:36 / njp
Conductivity @ 25 C	18800 umhos	s/cm	5	A2510 B	08/23/24 13:42 / pmw
Solids, Total Dissolved TDS @ 180 C	11600 mg/L		500	A2540 C	08/23/24 14:10 / bmm

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Exhibit 6: Water Analysis of Injection Interval

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

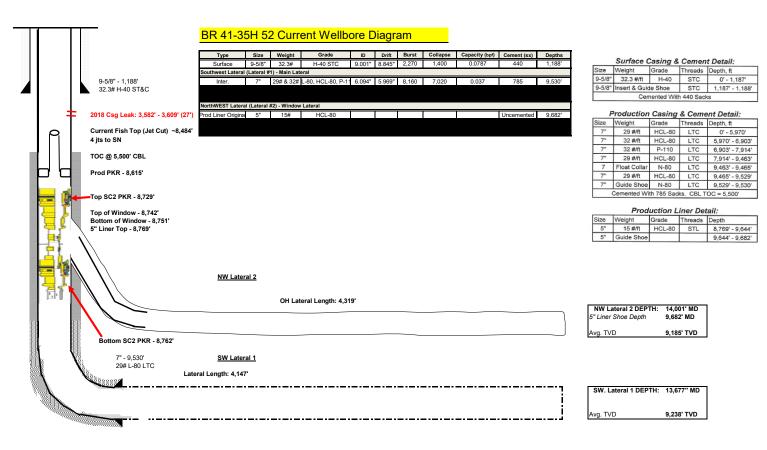
Client:White Rock Oil & GasProject:Drinking Water ContaminantsLab ID:B24091147-001Client Sample ID:Charlie Creek GN 8-23

Report Date: 09/17/24 Collection Date: 09/12/24 10:35 DateReceived: 09/12/24 Matrix: Drinking Water

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
PHYSICAL PROPERTIES					
pH	7.1 s.u.	Н	0.1	A4500-H B	09/13/24 11:40 / njp
pH Measurement Temp	16.7 °C		1.0	A4500-H B	09/13/24 11:40 / njp
Conductivity @ 25 C	15200 umhos/	′cm	5	A2510 B	09/13/24 11:40 / njp
Solids, Total Dissolved TDS @ 180 C	11500 mg/L		200	A2540 C	09/13/24 12:27 / bmm
NUTRIENTS					
Nitrogen, Nitrite as N	0.02 mg/L		0.01	E353.2	09/12/24 17:34 / krt

Aerial View

Sec. 26


T-25N R52E

BR 41-35H

Sec. 35

T-25N. R528

Ň

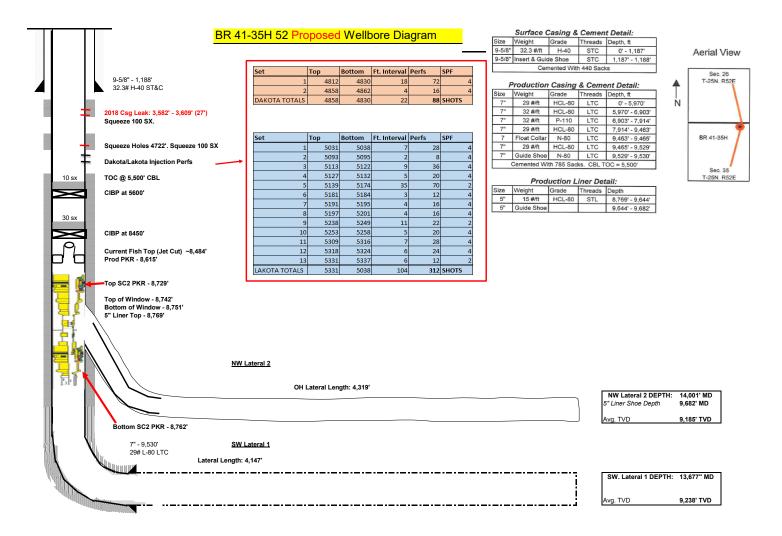


Exhibit 9: Bakken Water Analysis

DownHole SAT(tm)

WATER CHEMISTRY

W	hite Rock Oil &	Gas	BR 41-33H 52 Treater		
	eport Date: ample #:	10-04-2024 0	Sampled: 09-25-20 Sample ID: 24-0363	024 at 0000 4	
CATIONS			ANIONS		
Calcium (as Ca)	3	808	Chloride (as Cl)		69984
Magnesium (as Mg)	122	2.00	Sulfate (as SO ₄)		348.00
Barium (as Ba)	1	L.30	Bromine (as Br)		0.00
Strontium (as Sr)	120	0.00	Dissolved CO ₂ (as CO ₂)	875.00
Sodium (as Na)	37	500	Bicarbonate (as HCO ₃)		195.00
Potassium (as K)	3	250	Carbonate (as CO ₃)		0.00
Lithium (as Li)	(0.00	Oxalic acid (as C ₂ O ₄)		0.00
Ammonia (as NH ₃)	(0.00	Silica (as SiO ₂)		0.00
Aluminum (as Al)	(0.00	Phosphate(as PO ₄)		0.00
Iron (as Fe)	53	3.40	H ₂ S (as H ₂ S)		0.00
Manganese (as Mn)	:	3.60	Fluoride (as F)		0.00
Zinc (as Zn)	:	L.10	Nitrate (as NO ₃)		0.00
Lead (as Pb)	(0.00	Boron (as B)		0.00
PARAMETERS			BOUND IONS	TOTAL	FREE
Calculated T.D.S.(mg/L)) 121	721	Calcium	4094	4016
Molar Conductivity(umh	os/cm) 135	537	Barium	12.15	12.15
Resistivity(megohm-cm) 7.38	3e-6	Carbonate	1.93	0.0348
Sp.Gr.(g/mL)	1.	075	Phosphate	0.00	0.00
Pressure(psia)	14	1.70	Sulfate	374.10	165.58
pCO ₂ (atm)	0.0	506			
pH ₂ S(atm)	(0.00			
Temperature (^O F)	8	L.00	CORROSION RATE P	REDICTION	
рН	(5.20	CO ₂ - H ₂ S Rate(mpy))	0.159

FRENCH CREEK SOFTWARE, INC. 1220 VALLEY FORGE ROAD, SUITE 21, VALLEY FORGE, PA 19460

DownHole SAT(tm)

DEPOSITION POTENTIAL INDICATORS

White Rock Oil & (Gas	BR 41-33H 5 Treater	52
Report Date: Sample #:	10-04-2024 0	Sampled: Sample ID:	

SATURATION RATIO as IAP/Ksp

SATURATION RATIO as IA	P/Ksp	FREE ION MOMENTARY EXCES	S (ppm)
Calcite (CaCO ₃)	0.70	Calcite (CaCO ₃)	-0.0250
Aragonite (CaCO ₃)	0.64	Aragonite (CaCO ₃)	-0.0323
Witherite (BaCO ₃)	0.00	Witherite (BaCO ₃)	-63.71
Strontianite (SrCO ₃)	0.04	Strontianite (SrCO ₃)	-2.32
Calcium oxalate (CaC ₂ O ₄)	0.00	Calcium oxalate (CaC ₂ O ₄)	-0.0441
Magnesite (MgCO ₃)	0.02	Magnesite (MgCO ₃)	-1.98
Anhydrite (CaSO ₄)	0.15	Anhydrite (CaSO ₄)	-1246
Gypsum (CaSO ₄ *2H ₂ O)	0.20	Gypsum (CaSO ₄ *2H ₂ O)	-965.35
Barite (BaSO ₄)	19.87	Barite (BaSO ₄)	19.55
Celestite (SrSO ₄)	0.18	Celestite (SrSO ₄)	-404.05
Fluorite (CaF ₂)	0.00	Fluorite (CaF ₂)	-11.86
Calcium phosphate	0.00	Calcium phosphate	>-0.001
Hydroxyapatite	0.00	Hydroxyapatite	-988.99
Silica (SiO ₂)	0.00	Silica (SiO ₂)	-103.92
Brucite (Mg(OH) ₂)	< 0.001	Brucite (Mg(OH) ₂)	-2.75
Magnesium silicate	0.00	Magnesium silicate	-298.88
Iron hydroxide (Fe(OH) ₃)	13.10	Iron hydroxide (Fe(OH) ₃)	< 0.001
Strengite (FePO ₄ *2H ₂ O)	0.00	Strengite (FePO ₄ *2H ₂ O)	>-0.001
Siderite (FeCO ₃)	9.35	Siderite (FeCO ₃)	0.0601
Halite (NaCl)	0.05	Halite (NaCl)	-395810
Thenardite (Na2SO ₄)	0.00	Thenardite (Na2SO ₄)	-225098
Iron sulfide (FeS)	0.00	Iron sulfide (FeS)	-0.402
SIMPLE INDICES		CARBONATE PRECIPITATION	POTENTIAL (ppm)
Langelier	0.151	Calcite (CaCO ₃)	-81.88
Ryznar	5.90	Aragonite (CaCO ₃)	-137.30
Puckorius	0.00	Witherite (BaCO ₃)	-268.49
Larson-Skold Index	613.91	Strontianite (SrCO ₃)	-192.53
Stiff Davis Index	-0.447	Magnesite (MgCO ₃)	-232.41
Oddo-Tomson	-0.942	Siderite (FeCO ₃)	13.45
		G CONDITIONS	
Te	emperature (^O F)	81.00	

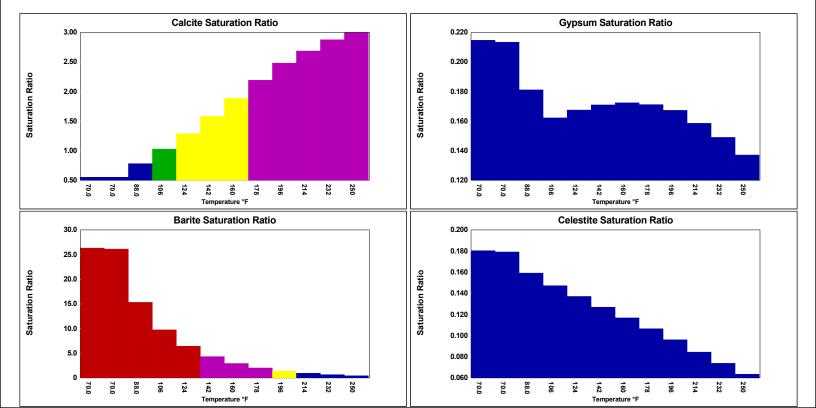
Temperature (PF)

3.00

•	``		
Time(mins)			

FRENCH CREEK SOFTWARE, INC. 1220 VALLEY FORGE ROAD, SUITE 21, VALLEY FORGE, PA 19460

DownHole SAT[™] Water Analysis Report



SYSTEM IDENTIFI	CATION	WATER CHEMISTRY			
White Deals Oil & C	200	CATIONS(mg/L)		ANIONS(mg/L)	
White Rock Oil & G	585	Calcium(as Ca)	3808	Chloride(as Cl)	69984
BR 41-33H 52		Magnesium(as Mg)	122.00	Sulfate(as SO ₄)	348.00
Turneter		Barium(as Ba)	11.30	Bromine(as Br)	0.00
Treater		Strontium(as Sr)	120.00	Dissolved CO ₂ (as CO ₂)	875.00
		Sodium(as Na)	37500	Bicarbonate(as HCO ₃)	195.00
		Potassium(as K)	3250	Carbonate(as CO ₃)	0.00
		Lithium(as Li)	0.00	Silica(as SiO ₂)	0.00
Complet ID // .	0	Iron(as Fe)	53.40	Phosphate(as PO_4)	0.00
Sample ID#:	0	Ammonia(as NH ₃)	0.00	H ₂ S (as H ₂ S)	0.00
ID	24-03634	Aluminum(as Al)	0.00	Fluoride(as F)	0.00
Comula Datas	00.25.2024 -+ 0000	Manganese(as Mn)	3.60	Nitrate(as NO ₃)	0.00
Sample Date:	09-25-2024 at 0000	Zinc(as Zn)	1.10	Boron(as B)	0.00
Report Date:	10-04-2024	Lead(as Pb)	0.00		
		PARAMETERS			
		Temperature(^O F)	81.00	Sample pH	6.20
		Conductivity(umhos/cm)	135537	Sp.Gr.(g/mL)	1.075
		Resistivity(megohm-cm)	7.38e-6	T.D.S.(mg/L)	121721

SCALE AND CORROSION POTENTIAL

Temp.	Press.		Calcite	An	hydrite	G	ypsum	В	arite	C	Celestite	9	Siderite	Mack	inawite
(⁰ F)	(psia)		CaCO3	C	aSO4	CaS	0 ₄ *2H ₂ O	В	aSO4		SrSO ₄		FeCO ₃	F	eS
70.00	14.70	0.554	-0.0401	0.146	-1270	0.215	-924.15	26.29	19.82	0.180	-400.55	6.85	0.0492	0.00	-0.389
70.00	50.00	0.552	-0.0405	0.145	-1278	0.213	-929.80	26.11	19.81	0.179	-402.58	6.85	0.0493	0.00	-0.389
88.00	545.00	0.783	-0.0187	0.134	-1319	0.181	-1068	15.32	19.23	0.159	-432.68	11.45	0.0714	0.00	-0.411
106.00	1040.00	1.03	0.00221	0.133	-1266	0.162	-1151	9.73	18.41	0.147	-449.47	17.51	0.0933	0.00	-0.436
124.00	1535.00	1.29	0.0236	0.140	-1144	0.167	-1062	6.42	17.26	0.137	-464.68	25.46	0.117	0.00	-0.465
142.00	2030.00	1.58	0.0467	0.155	-979.45	0.171	-996.11	4.31	15.62	0.127	-482.79	35.89	0.143	0.00	-0.499
160.00	2525.00	1.88	0.0717	0.180	-799.34	0.172	-951.96	2.93	13.29	0.117	-504.62	49.18	0.173	0.00	-0.538
178.00	3020.00	2.19	0.0987	0.216	-623.21	0.171	-928.22	2.01	10.03	0.107	-531.21	65.60	0.207	0.00	-0.584
196.00	3515.00	2.48	0.128	0.266	-464.03	0.167	-924.78	1.39	5.47	0.0961	-563.77	85.27	0.246	0.00	-0.638
214.00	4010.00	2.68	0.160	0.330	-340.90	0.158	-973.52	0.943	-1.18	0.0844	-615.38	106.31	0.292	0.00	-0.724
232.00	4505.00	2.87	0.194	0.420	-228.06	0.149	-1020	0.648	-10.14	0.0739	-667.16	130.97	0.341	0.00	-0.807
250.00	5000.00	2.99	0.229	0.540	-138.86	0.137	-1095	0.443	-22.56	0.0635	-731.17	156.92	0.396	0.00	-0.910
		xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L

Saturation Ratios (xSAT) are the ratio of ion activity to solubility, e.g. {Ca}{CO₃}/K_{sp}. pCO₂ (atm) is the partial pressure of CO₂ in the gas phase. mg/L scale is the quantity of precipitation (or dissolution) required to instantaneously bring the water to equilibrium.

DownHole SAT[™] Water Analysis Report

	CATIONS(mg/L) Calcium(as Ca) Magnesium(as Mg) Barium(as Ba) Strontium(as Sr)	3808 122.00 11.30	ANIONS(mg/L) Chloride(as Cl) Sulfate(as SO ₄) Bromine(as Br)	69984 348.00 0.00
	Magnesium(as Mg) Barium(as Ba)	122.00 11.30	Sulfate(as SO ₄)	348.00
	Barium(as Ba)	11.30	C D	
	· · ·		Bromine(as Br)	0.0
	Strontium(as Sr)	100.00		0.0
		120.00	Dissolved CO ₂ (as CO ₂)	875.0
	Sodium(as Na)	37500	Bicarbonate(as HCO ₃)	195.0
	Potassium(as K)	3250	Carbonate(as CO ₃)	0.0
	Lithium(as Li)	0.00	Silica(as SiO ₂)	0.0
	Iron(as Fe)	53.40	Phosphate(as PO_4)	0.0
	Ammonia(as NH ₃)	0.00	H ₂ S (as H ₂ S)	0.0
	Aluminum(as Al)	0.00	Fluoride(as F)	0.0
24 -+ 0000	Manganese(as Mn)	3.60	Nitrate(as NO ₃)	0.0
	Zinc(as Zn)	1.10	Boron(as B)	0.0
24	Lead(as Pb)	0.00		
	PARAMETERS			
	Temperature(^O F)	81.00	Sample pH	6.2
	Conductivity(umhos/cm)	135537	Sp.Gr.(g/mL)	1.07
	Resistivity(megohm-cm)	7.38e-6	T.D.S.(mg/L)	12172
	24 at 0000 24	Lithium(as Li) Iron(as Fe) Ammonia(as NH ₃) Aluminum(as Al) Manganese(as Mn) Zinc(as Zn) Lead(as Pb) PARAMETERS Temperature(^O F) Conductivity(umhos/cm)	Lithium(as Li) 0.00 Iron(as Fe) 53.40 Ammonia(as NH ₃) 0.00 Aluminum(as Al) 0.00 Manganese(as Mn) 3.60 Zinc(as Zn) 1.10 Lead(as Pb) 0.00 PARAMETERS Temperature(^O F) 81.00 Conductivity(umhos/cm) 135537	Lithium(as Li) 0.00 Silica(as SiO ₂) Iron(as Fe) 53.40 Phosphate(as PO ₄) Ammonia(as NH ₃) 0.00 H ₂ S (as H ₂ S) Aluminum(as Al) 0.00 Fluoride(as F) Manganese(as Mn) 3.60 Nitrate(as NO ₃) Zinc(as Zn) 1.10 Boron(as B) Lead(as Pb) 0.00 PARAMETERS Temperature(^O F) 81.00 Sample pH Conductivity(umhos/cm) 135537 Sp.Gr.(g/mL)

SCALE AND CORROSION POTENTIAL

Depth	Temp.	Press.	Ca	alcite	Anh	ydrite	Gy	psum	Ba	arite	Cel	estite	Sid	erite	Macki	inawite	
	(⁰ F)	(psia)	Ca	aCO3	Ca	ISO4	CaSO	4*2H2O	Ba	SO4	Sr	SO4	Fe	CO3	F	eS	
After Flash	70.0	14.7	0.554	-0.0401	0.146	-1270	0.215	-924.15	26.29	19.82	0.180	-400.55	6.85	0.0492	0.00	-0.389	
At Separator	70.0	50.0	0.552	-0.0405	0.145	-1278	0.213	-929.80	26.11	19.81	0.179	-402.58	6.85	0.0493	0.00	-0.389	
10	88.0	545.0	0.783	-0.0187	0.134	-1319	0.181	-1068	15.32	19.23	0.159	-432.68	11.45	0.0714	0.00	-0.411	
20	106.0	1040	1.03	0.00221	0.133	-1266	0.162	-1151	9.73	18.41	0.147	-449.47	17.51	0.0933	0.00	-0.436	
30	124.0	1535	1.29	0.0236	0.140	-1144	0.167	-1062	6.42	17.26	0.137	-464.68	25.46	0.117	0.00	-0.465	
40	142.0	2030	1.58	0.0467	0.155	-979.45	0.171	-996.11	4.31	15.62	0.127	-482.79	35.89	0.143	0.00	-0.499	
50	160.0	2525	1.88	0.0717	0.180	-799.34	0.172	-951.96	2.93	13.29	0.117	-504.62	49.18	0.173	0.00	-0.538	
60	178.0	3020	2.19	0.0987	0.216	-623.21	0.171	-928.22	2.01	10.03	0.107	-531.21	65.60	0.207	0.00	-0.584	
70	196.0	3515	2.48	0.128	0.266	-464.03	0.167	-924.78	1.39	5.47	0.0961	-563.77	85.27	0.246	0.00	-0.638	
80	214.0	4010	2.68	0.160	0.330	-340.90	0.158	-973.52	0.943	-1.18	0.0844	-615.38	106.31	0.292	0.00	-0.724	
90	232.0	4505	2.87	0.194	0.420	-228.06	0.149	-1020	0.648	-10.14	0.0739	-667.16	130.97	0.341	0.00	-0.807	
Bottom Hole	250.0	5000	2.99	0.229	0.540	-138.86	0.137	-1095	0.443	-22.56	0.0635	-731.17	156.92	0.396	0.00	-0.910	
			xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	xSAT	mg/L	

Saturation Levels (xSAT) are the ratio of ion activity to solubility, e.g. {Ca}{CO₃}/K_{sp}. pCO₂ (atm) is the partial pressure of CO₂ in the gas phase. mg/L scale is the quantity of precipitation (or dissolution) required to instantaneously bring the water to equilibrium.

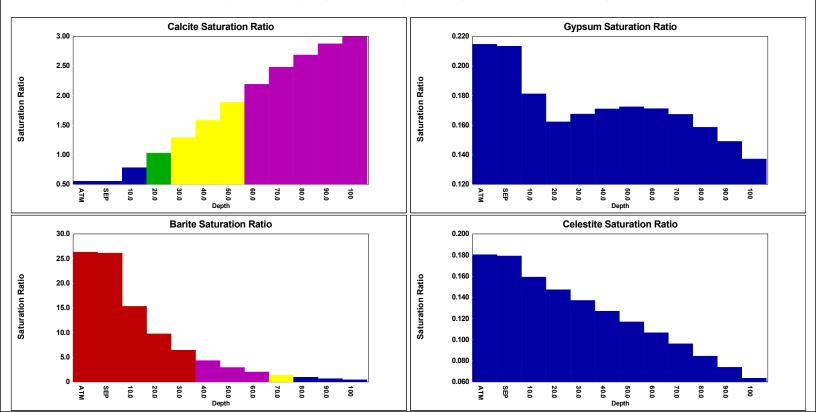


Exhibit 10. Surface Owners, Leased and Unleased Mineral Owners

Surface Owners

Surface Description	Name	Address
S26, T25 N, R52 E, SWNE, S1/2SW, SE1/4, S26, T25 N, R52 E, NWNW	THOMAS COLETTE LIV TR, THOMAS G COLETTE TRUSTEE	208 CHESTNUT AVE GELNDIVE, MONTANA 59330
S35, T25 N, R52 E, ALL	BOYD CANDEE	9119 ALGER COURT INVER GROVE HEIGHTS, MINNESOTA 55077
S25, T25 N, R52 E, ALL	PATTI A MCGINNIS	814 LINCOLN AVE SIDNEY, MONTANA 59270
Unknown	ERVIN GOSS	12947 CR 354 LAMBERT, MT 59243
Unknown	MARVIN GOSS	31427 HWY 201 RICHEY, MT 59259
Unknown	JAMES D GOSS	PO BOX 354 SIDNEY, MT 59270
T25 N, R52 E, N2NE, SENE, NENW, S2NW, N2SW LESS 12.68 AC HWY R/W, S36, T25 N, R52 E, ALLLESS 10.44 AC HWY R/W	STATE OF MONTANA	201 W Main Street Sidney, Montana 59270-4035

Current Operator, Lease owner of nonoperated lease, Mineral owner of nonoperated lease

Name	Address
ELLIOTT FAMILY TRUST	15 BUCCANEER CT FORT WORTH, TX 76179
RALPH MADDOX FAMILY TRUST	250 W NOTTINGHAM #400 SAN ANOTNIO, TX 78209
MADDOX FAMILY TRUST	250 W NOTTINGHAM #400 SAN ANOTNIO, TX 78209
W H CARDWELL FAMILY TRUST	PO BOX 330 MT ENTERPRISE, TX 75681
PETROVAUGHN INC.	315 WASHINGTON AVENUE SAND SPRINGS, OK 74063
DEER SIBLINGS 2005 MINERAL MGMNT TR	PO BOX 3480 OMAHA, NE 68103
DORCHESTER MINERALS OPERATING, LP	3838 OAK LAWN AVE STE 300 DALLAS, TX 75219
ORRION ENERGY LLC	600 17TH STREET STE 2800 SOUTH DENVER, CO 80202
TODD SLAWSON TRUST	245 N WACO STE 400 WICHITA, KS 67202
BURCH HOLDINGS MANAGEMENT CO LLC	PO BOX 3480 OMAHA, NE 68103
BIGSKY OIL & GAS LLC	201 EAST LAS OLAS BLVD STE 1650 FORT LAUDERDALE, FL 33301
BRENDALL ENERGY LLC	8310 S VALLEY HWY STE 350 ENGLEWOOD, CO 80112
White Rock Oil & Gas Partners II LP	5810 Tennyson Parkway, Suite 500 Plano, TX 75024

Name	Address
White Rock Oil & Gas Partners II-B LP	5810 Tennyson Parkway, Suite 500 Plano, TX 75024
White Rock Oil & Gas GP II LLC	5810 Tennyson Parkway, Suite 500 Plano, TX 75024
DENISE B WEST	710 RHAPSODY RD SEDONA, AZ 86336
White Rock Energy LLC	5810 Tennyson Parkway, Suite 500 Plano, TX 75024
DOGWOOD HILL FARMS LLC	1882 KEEZLETOWN RD HARRISONBURG, VA 22802
DOUGLAS S KING	108 WOODLAND HILLS DR ALEDO, TX 76008
JBM OIL & GAS LLC	427 PARK ST CHARLOTTESVILLE, VA 22902
MELBBY GAS LLC	14861 N SCOTTSDALE RD #115 SCOTTSDALE, AZ 85254
MIKE LOGAN OIL PROPERTIES LLC	18952 E BATES AVE AURORA, CO 80013
ROBERT & GAIL M BOGLE TRUST	1736 LA CORONILLA DR SANTA BARBARA, CA 93109
STEVEN C WEST	1636 MORNING STONE DR PRESCOTT, AZ 86305
STUART F CHASE	645 PLANTATION CT CHARLOTTESVILLE, VA 22903
DERWOOD S CHASE JR GRAND TRUST	350 OLD IVY WAY STE 100 CHARLOTTESVILLE, VA 22903
PATRICIA A BRANSON REV TR	350 HIDDEN HILLS LN ORTONVILLE, MI 48462

Name	Address
MORNINGSTAR OPERATING LLC	400 W 7TH STREET FORT WORTH, TX 76102
SLAWSON EXPLORATION COMPANY, INC	245 N WACO STE 400 WICHITA, KS 67202
JOHN BRUCE BRANSON REVOCABLE TRUST	27778 ROAD P DOLORES, CO 81323
ALAMEDA ENERGY INC	245 N WACO STE 400 WICHITA, KS 67202
SHERINGHAM CORPORATION	PO BOX 10 COLLINSVILLE, TX 76233
SLAWSON RESOURCES CO	245 N WACO STE 400 WICHITA, KS 67202
E H GUNTER FAMILY TRUST	8425 KENDALL CT ARVADA, CO 80003

Exhibit 10. Surface Owners, Leased and Unleased Mineral Owners

Surface Owners

Surface Description	Name	Address
S26, T25 N, R52 E, SWNE, S1/2SW, SE1/4, S26, T25 N, R52 E, NWNW	THOMAS COLETTE LIV TR, THOMAS G COLETTE TRUSTEE	208 CHESTNUT AVE GLENDIVE, MT 59330
S35, T25 N, R52 E, ALL	BOYD CANDEE	9119 ALGER COURT INVER GROVE HEIGHTS, MN 55077
S25, T25 N, R52 E, ALL	PATTI A MCGINNIS	814 LINCOLN AVE SIDNEY, MT 59270
S25, T25 N, R52 E, ALL	ERVIN GOSS	12947 CR 354 LAMBERT, MT 59243
S25, T25 N, R52 E, ALL	MARVIN GOSS	31427 HWY 201 RICHEY, MT 59259
S25, T25 N, R52 E, ALL	JAMES D GOSS	PO BOX 354 SIDNEY, MT 59270
T25 N, R52 E, N2NE, SENE, NENW, S2NW, N2SW LESS 12.68 AC HWY R/W, S36, T25 N, R52 E, ALLLESS 10.44 AC HWY R/W	STATE OF MONTANA	201 W Main Street Sidney, MT 59270-4035

Current Operator, Lease owner of nonoperated lease, Mineral owner of nonoperated lease

Name	Address
ELLIOTT FAMILY TRUST	15 BUCCANEER CT FORT WORTH, TX 76179
RALPH MADDOX FAMILY TRUST	250 W NOTTINGHAM #400 SAN ANOTNIO, TX 78209
MADDOX FAMILY TRUST	250 W NOTTINGHAM #400 SAN ANOTNIO, TX 78209
W H CARDWELL FAMILY TRUST	PO BOX 330 MT ENTERPRISE, TX 75681
PETROVAUGHN INC.	315 WASHINGTON AVENUE SAND SPRINGS, OK 74063
DEER SIBLINGS 2005 MINERAL MGMNT TR	PO BOX 3480 OMAHA, NE 68103
DORCHESTER MINERALS OPERATING, LP	3838 OAK LAWN AVE STE 300 DALLAS, TX 75219
ORRION ENERGY LLC	600 17TH STREET STE 2800 SOUTH DENVER, CO 80202
TODD SLAWSON TRUST	245 N WACO STE 400 WICHITA, KS 67202
BURCH HOLDINGS MANAGEMENT CO LLC	PO BOX 3480 OMAHA, NE 68103
BIGSKY OIL & GAS LLC	201 EAST LAS OLAS BLVD STE 1650 FORT LAUDERDALE, FL 33301
BRENDALL ENERGY LLC	8310 S VALLEY HWY STE 350 ENGLEWOOD, CO 80112

Name	Address
White Rock Oil & Gas Partners II LP	5810 Tennyson Parkway, Suite 500 Plano, TX 75024
White Rock Oil & Gas Partners II-B LP	5810 Tennyson Parkway, Suite 500 Plano, TX 75024
White Rock Oil & Gas GP II LLC	5810 Tennyson Parkway, Suite 500 Plano, TX 75024
DENISE B WEST	710 RHAPSODY RD SEDONA, AZ 86336
White Rock Energy LLC	5810 Tennyson Parkway, Suite 500 Plano, TX 75024
DOGWOOD HILL FARMS LLC	1882 KEEZLETOWN RD HARRISONBURG, VA 22802
DOUGLAS S KING	108 WOODLAND HILLS DR ALEDO, TX 76008
JBM OIL & GAS LLC	427 PARK ST CHARLOTTESVILLE, VA 22902
MELBBY GAS LLC	14861 N SCOTTSDALE RD #115 SCOTTSDALE, AZ 85254
MIKE LOGAN OIL PROPERTIES LLC	18952 E BATES AVE AURORA, CO 80013
ROBERT & GAIL M BOGLE TRUST	1736 LA CORONILLA DR SANTA BARBARA, CA 93109
STEVEN C WEST	1636 MORNING STONE DR PRESCOTT, AZ 86305
STUART F CHASE	645 PLANTATION CT CHARLOTTESVILLE, VA 22903
DERWOOD S CHASE JR GRAND TRUST	350 OLD IVY WAY STE 100 CHARLOTTESVILLE, VA 22903

Name	Address
PATRICIA A BRANSON REV TR	350 HIDDEN HILLS LN ORTONVILLE, MI 48462
MORNINGSTAR OPERATING LLC	400 W 7TH STREET FORT WORTH, TX 76102
SLAWSON EXPLORATION COMPANY, INC	245 N WACO STE 400 WICHITA, KS 67202
JOHN BRUCE BRANSON REVOCABLE TRUST	27778 ROAD P DOLORES, CO 81323
ALAMEDA ENERGY INC	245 N WACO STE 400 WICHITA, KS 67202
SHERINGHAM CORPORATION	PO BOX 10 COLLINSVILLE, TX 76233
SLAWSON RESOURCES CO	245 N WACO STE 400 WICHITA, KS 67202
E H GUNTER FAMILY TRUST	8425 KENDALL CT ARVADA, CO 80003

BEFORE THE BOARD OF OIL AND GAS CONSERVATION OF THE STATE OF MONTANA

APPLICATION OF WHITE ROCK OIL AND GAS, LLC. FOR AN UNDERGROUND INJECTION CONTROL (UIC) PERMIT TO CONVERT BR 41-35H 52 WELL, 250' FNL, 500' FEL, NENE, SEC 35 T25N, R52E, TO AN INJECTION WELL FOR THE PURPOSE OF SALTWATER DISPOSAL WITHIN THE ELM COULEE FIELD.

NOTICE OF APPLICATION FOR UIC PERMIT FOR INJECTION WELL

DATE: May 7, 2025

- TO: Current Operator, Lease owner of nonoperated lease, Mineral owner of nonoperated lease, and surface owners within the area of review listed in UIC Application
- RE Application for Underground Injection Permit

Ladies and Gentlemen,

WHITE ROCK OIL AND GAS, LLC. at 5810 Tennyson Pkwy, Suite 500, Plano, TX 75024, has applied for a permit to convert BR 41-35H 52 well, 250' FNL, 500' FEL, NENE, Sec 35, T25N, R52E, Richland County, MT to a saltwater disposal well. This letter is being sent in accordance with the Montana Board of Oil and Gas Conservation, Underground Injection Control Rules of Montana (ARM), Title 36, Chapter 22. You have been identified as a Current Operator, Lease owner of nonoperated lease, Mineral owner of nonoperated lease, and/or surface owner.

The application will be heard by the Montana Board of Oil and Gas Conservation at its June 12, 2025 hearing beginning at 9:00 AM in the Montana Board of Oil and Gas Hearing Room at 2535 St. John's Avenue, Billings, Montana. A copy of the complete application is on file with the Montana Board of Oil and Gas Conservation, 2535 St. John's Avenue, Billings, MT, 59102. If you have any questions concerning the application, please contact Ms. Shawna Bonini, Operations Engineer, White Rock Oil and Gas, 6602 Wagon Trail, Billings, MT 59106.

Sincerely,

hauna Duin

Shawna Bonini, PE Operations Engineer White Rock Oil and Gas, LLC. 6602 Wagon Trail Billings, MT 59106 Cell: 406-690-0068 sbonini@whiterockog.com

BEFORE THE BOARD OF OIL AND GAS CONSERVATION OF THE STATE OF MONTANA

APPLICATION OF WHITE ROCK OIL AND GAS, LLC. FOR AN UNDERGROUND INJECTION CONTROL (UIC) PERMIT TO CONVERT BR 41-35H 52 WELL, 250' FNL, 500' FEL, NENE, SEC 35 T25N, R52E, TO AN INJECTION WELL FOR THE PURPOSE OF SALTWATER DISPOSAL WITHIN THE ELM COULEE FIELD.

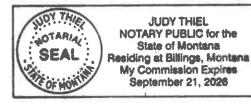
AFFIDAVIT OF NOTIFICATION

DATE: May 7, 2025

STATE OF MONTANA)) SS.

COUNTY OF YELLOWSTONE

Shawna Bonini, being duly sworn, deposes, and says:


That Notice advising WHITE ROCK OIL AND GAS, LLC. application for UIC Permit in the captioned matter, in the form attached Exhibit 12 was mailed to the Current Operators, Lease owners of nonoperated lease, Mineral owners of nonoperated lease, and surface owners within the area of review at the addresses show in Exhibit 11 attached, by mailing a true copy thereof this 7^h Day of May, 2025, postage prepaid, First Class Mail. This Affidavit is given as evidence of compliance with ARM 36.22.1410.

Shawna Bonin

STATE OF MONTANA

)) SS.)

Subscribed and sworn to before me this 7th Day of May 2025.

Notary Public

State of Montana My Commission Expires

September 21, 2026